
1. Introduction

1. Download These Instructions

If you wish to have an offline copy of these instructions, please download the PDF version of this

Installation Manual by clicking here.

2. What is the relationship between SyMBA and the
Object Model?

In the FuGE and SyMBA development processes, the master version of the FuGE structure is the
Object Model, written with UML and, using Maven 2 and AndroMDA, translated into a variety of
tools. SyMBA uses both the FuGE XSD STK, whose purpose is to create either a plain FuGE XSD
or aid in the creation of specific community extensions of the FuGE-OM, and the FuGE Hibernate
STK.

There are a number of changes made to the officially-sanctioned FuGE-OM as provided in the
main download pages that were performed for both the Hibernate STK and SyMBA. These
changes are generally to low-level AndroMDA tags and are required to make sure that access to
the database is straightforward and clear. A full list of the changes can be found on the page
within this documentation entitled FuGE-OM Modifications for the Hibernate Implementation .

../../installation.pdf
../../installation.pdf
fugeom-modifications.html

-

-

2. What You'll Need

1. Recommendations

1.1. Operating Systems

SyMBA can be installed on either Windows or Linux, but we highly recommend a Linux system,
specifically Ubuntu Gutsy Gibbon and higher.

If you use Ubuntu, it is simple to apt-get the components required. Alternatively, you could create
a Virtual Machine and install the latest Ubuntu Server (or Standard) release (8.04, Hardy Heron)
on it. This has the advantage that it has postgresql 8.3 and maven 2.0.8 in its package repository.
During the installation it even asks whether you want to install a database server.

1.2. Database Choice

We also recommend PostgreSQL or MySQL for the database choice, as these are the only two
that have been tested with this STK. Of these, PostgreSQL is the preferred choice as it is the one
used by the main developer of this STK.

These instructions were originally and loosely based on those found in the Credits Section , but

have been modified to suit the needs of this latest version of the STK.

2. Installing SSH

While the STK does NOT require SSH, if your database server will be running on a different
machine from where you have this project installed, you may wish to be able to log on to that
remote machine.

Ubuntu. In Ubuntu, you can just run the following command to install ssh if you don't have it yet

on the appropriate two machines:

 sudo apt-get install ssh

Other OSs. You may already have ssh installed on the appropriate machines. You can use

either commercial SSH or the open alternative, OpenSSH (this is what Ubuntu installs using the

credits.html

-

-

-

above command).

Windows. There are a couple of options for installing an OpenSSH server on your windows

machine, though neither are particularly easy. (This is another reason we recommend running

the webapp from a *nix environment.)

One option for OpenSSH is to install OpenSSH for Windows , which installs a minimal

cygwin package .

Fully install cygwin, and then install OpenSSH within cygwin. We recommend installing

cygwin to help you with this task. When running setup.exe during the cygwin installation,

ensure that you select "openssh" for installation. This application lives underneath the

"Net" section of the cygwin install. There are some useful instructions for setting up SSH

via cygwin here . In short, however, once cygwin is installed and the users set up, you

can set up the SSH service with two commands. Firstly, run ssh-host-config , which sets

up the server information for SSH. This is an interactive setup program. Secondly, you

will want to set up user private and public keys with ssh-user-config . Remember that the

user you run ssh-user-config for is the user that you need to provide the details of within

the net.sourceforge.symba.webapp.scp.* variables inside the top-level pom.xml.

3. Installing Sun Java 5 or Java 6

SyMBA has been tested on both Sun Java 5 and Java 6, so feel free to use whichever version
suits you.

3.1. Install Sun J2SE Development Kit 6.0 (JDK 6.0)

Otherwise, if you are using Ubuntu 7.04 or higher (or similar), you can install Sun Java 6 simply
with an apt-get command. The following commands show the installation of the binaries, and of
the JDK (the latter is required for Tomcat):

 sudo apt-get install sun-java6-bin
 sudo apt-get install sun-java6-jdk

and then optionally set the default version in your system with

 sudo update-java-alternatives

Full details of the installation of Sun Java on Ubuntu 7.04 or higher is available at

https://help.ubuntu.com/community/Java .

http://sshwindows.sourceforge.net/
http://ist.uwaterloo.ca/~kscully/CygwinSSHD_W2K3.html
https://help.ubuntu.com/community/Java

Alternatively, you can download the latest Java from Sun directly .

3.2. Install Sun J2SE Development Kit 5.0 (JDK 5.0)

If you are using Ubuntu 7.04 or higher, you can install Sun Java 5 simply with an apt-get
command. The following commands show the installation of the binaries, and of the JDK (the
latter is required for Tomcat):

 sudo apt-get install sun-java5-bin
 sudo apt-get install sun-java5-jdk

and then optionally set the default version in your system with

 sudo update-java-alternatives

Full details of the installation of Sun Java on Ubuntu 7.04 or higher is available at

https://help.ubuntu.com/community/Java . These instructions are for java 6, so just replace any

instance of the number "6" in the instructions with the number "5".

Alternatively, you can download Java 1.5.x from Sun directly .

3.3. Check Your Installation

Make sure that the JAVA_HOME environment variable is pointing to the directory where you
installed the JDK.

If using the "apt-get install" method for Ubuntu described above combined with the update-java-
alternatives command, you should already have this variable set.

4. Download and Install Maven 2.0.7 or Later

Download and install Maven 2.0.7 or later from this site: http://maven.apache.org/download.html

5. Maven Setup

http://java.sun.com/javase/downloads/index.jsp
https://help.ubuntu.com/community/Java
http://java.sun.com/j2se/1.5.0/download.jsp
http://maven.apache.org/download.html

Create a directory in your home directory called .m2 with a single file inside called settings.xml .
This is what my settings.xml looks like:

 <settings>
<localRepository>/media/share/synched/Documents/.m2/repository/</localRepository>

 <proxies>

 <proxy>
 <active>true</active>

 <protocol>http</protocol>

 <host>my.proxy.host</host>
 <port>8080</port>
 </proxy>

 </proxies>
 <mirrors>
 <mirror>

 <id>ibiblio.org</id>

 <name>ibiblio Mirror of http://repo1.maven.org/maven2/
 </name>

 <url>http://mirrors.ibiblio.org/pub/mirrors/maven2</url>

 <mirrorOf>central</mirrorOf>
 </mirror>

 </mirrors>
 </settings>

All sections are optional. However, depending on your circumstances, you may wish to use one or
more of these settings. The "localRepository" element names a location separate from the default
home directory for the Maven2 repository. This may be beneficial if you have limited space on
your home directory, as this repository directory can grow quite large. The "proxies" element
should only be used for those developers who must access the internet via a proxy. The "mirrors"
section is useful to have in case the primary central Maven2 server is offline for some reason.

6. Environment Variables and Settings for Maven

Set up the environment variable M2_HOME to point to your maven installation directory, and then
ensure that both $M2_HOME/bin and $JAVA_HOME/bin are present in your PATH. Also set
M2_REPO, which is the location of your Maven2 repository. Not only is it recommended by
Maven, it is also a variable used by this project later on.

7. Test Maven (Part One)

Test that you've instaled maven correctly by running mvn --version . You should see something
similar (but not necessarily identical) to the following:

 $ mvn --version
 Maven version: 2.0.7
 Java version: 1.5.0_08
 OS name: "linux" version: "2.6.17-12-386" arch: "i386"

8. Test Maven (Part Two)

Check that Maven2 is working properly by creating a temporary, empty project with the following
command:

 mvn archetype:create -DgroupId=testapp -DartifactId=testapp

Check for the BUILD SUCCESSFUL message and, once you have received this message, please
delete the created testapp folder.

9. Introduction

This is the only AndroMDA artifact that we will install explicitly. All other artifacts, such as
AndroMDA cartridges, will be automatically downloaded by the Maven2 scripts generated by the
plugin. Install the plugin by following the steps below.

10. AndroMDA Installation

-

-

-

-

-

10.1. Download and Install

Click here to download the the AndroMDA plugin installer.

Unzip the contents of the installer into your Maven repository at $M2_REPO (or whatever you

have set "localRepository" to be, or by default, it resides in your-home-dir/.m2/repository).

Verify that the following directory was created (switch the slashes around for Windows):

 $M2_REPO/org/andromda/maven/plugins/andromda-maven-plugin>>>

10.2. Test Installation

Create a temporary directory, e.g. C:\andromda-temp or $HOME/andromda-temp .

Create a file called pom.xml in this directory with the following content:

 <project>
 <modelVersion>4.0.0</modelVersion>
 <groupId>samples.test</groupId>
 <artifactId>test</artifactId>
 <version>1.0</version>
 <packaging>jar</packaging>
 <name>test</name>
 <build>
 <defaultGoal>compile</defaultGoal>
 <plugins>
 <plugin>
 <groupId>org.andromda.maven.plugins</groupId>
 <artifactId>andromdapp-maven-plugin</artifactId>
 <version>3.2</version>
 </plugin>
 </plugins>
 </build>
 <repositories>
 <repository>
 <id>andromda</id>
 <name>AndroMDA Repository</name>
 <url>http://team.andromda.org/maven2</url>
 </repository>
 </repositories>
 <pluginRepositories>
 <pluginRepository>
 <id>andromda</id>
 <name>AndroMDA Repository</name>

http://team.andromda.org/maven2/org/andromda/maven/plugins/andromdapp-maven-plugin/3.2/andromdapp-maven-plugin-install-3.2.zip

 <url>http://team.andromda.org/maven2</url>
 </pluginRepository>
 </pluginRepositories></project>

-

-

Open a Command Prompt in the directory where you created this pom.xml and run the

command mvn without any arguments. Make sure the command completes successfully by

displaying the BUILD SUCCESSFUL message.

You can now delete the temporary directory you just created.

11. Choosing a UML Tool

You will probably want a UML tool to use if you wish to manipulate the UML at all. If this is
important to you, AndroMDA has been tested with both ArgoUML and MagicDraw , though the

FuGE STK only recommends the MagicDraw line of editors. You must use MagicDraw 15.0 or

higher. A free version of the Community Edition of this UML editor is available.

12. Installing a Supported Database

You must choose a database supported by Hibernate. Databases used in the creation of the
Hibernate STK include PostgreSQL and MySQL. Hibernate STK has been extensively tested on
PostgreSQL and less extensively tested on MySQL. In fact, many users (especially Windows
users) have reported problems in the past with using MySQL together with earlier versions of this
project on Windows. In these cases, we recommend PostgreSQL.

12.1. PostgreSQL

You can download PostgreSQL from http://www.postgresql.org/download/ . It is the recommended

database . It is not required, but it is recommended that you also install a graphical database

browser such as pgAdminIII or PhpPgAdmin, both available from the url above. The JDBC driver

should come with the download. Alternatively the PostgreSQL jdbc driver can be downloaded from

http://jdbc.postgresql.org/

12.2. MySQL

You can download MySQL from http://dev.mysql.com/downloads/ . phpMyAdmin (

http://www.phpmyadmin.net/home_page/downloads.php) is suggested as the GUI for MySQL. If

using MySQL, the jdbc driver can be downloaded at:

http://dev.mysql.com/downloads/connector/j/3.1.html

Instructions for Subversion checkout are available on the Source Repository information page.

http://galaxy.andromda.org/docs/getting-started/java/resources/uml-tools/argouml/install.html
http://galaxy.andromda.org/docs/getting-started/java/resources/uml-tools/magicdraw/install.html
http://www.postgresql.org/download/
http://jdbc.postgresql.org/
http://dev.mysql.com/downloads/
http://www.phpmyadmin.net/home_page/downloads.php
http://dev.mysql.com/downloads/connector/j/3.1.html
../../source-repository.html

3. Setting Up, Compiling, and Running the

Hibernate STK

1. Maven Profiles

SyMBA makes use of two of the profiles generated by AndroMDA within the top-level pom.xml :
the default (local) profile and the validation (val) profile. The default profile should contain all of the
connection details for your main database, while the validation profile should contain all of the
details for your unit testing and general testing database.

In this way, you don't have to constantly be changing the values in your pom.xml when you are
switching between a testing environment and your normal environment. This page shows you how
to set the values for each of these profiles.

The default profile is identified within the pom.xml with the term "local" and the default activation
setting:

 [...]
 <profiles>
 <profile>
 <id>local</id>
 <activation>
 <activeByDefault>true</activeByDefault>
 </activation>
 [...]

The testing profile is identified within the pom.xml with the term "validation" (short name "val"):

 [...]
 <profile>
 <id>validation</id>
 <activation>
 <property>
 <name>env</name>
 <value>val</value>
 </property>
 </activation>
 [...]

By default, no unit tests will be performed when the default (local) profile is in use. If you plan to
run the unit tests, then please make both a default and a test database using the steps below.

If you wish to use any of the other two available profiles, then please do. Currently, the STK
makes no use of them.

2. Create a database to hold the metadata

2.1. Default (Local) Profile

Create a database inside your chosen DBMS entitled, for example, "fuge". You will also need to
have access to a database user that is the owner of this database, e.g create a new user called
"fuge" that you use specifically for accessing and modifying the metadata database. Modify the
following elements in the top-level pom.xml located at your-checkout/trunk/pom.xml for the profile
with the "local" id. This will change the jdbc connection details to a value suitable for your
database connection, and also provide the STK with your database username and password:

 <jdbc.url>
 </jdbc.url>

 <jdbc.username></jdbc.username>
 <jdbc.password></jdbc.password>

2.2. Testing (Validation) Profile

Follow the same steps as above, but making the changes in the variables within the validation
profile rather than the local profile.

3. Point Maven at the correct jdbc jar

3.1. Default (Local) Profile

Modify the following elements in the top-level pom.xml located at your-checkout/trunk/pom.xml for
the profile with the "local" id. This will ensure that the STK is pointed at the appropriate location for
your jdbc jar and the appropriate class name for your jdbc driver:

 <jdbc.driver>
 </jdbc.driver>

 <jdbc.driver.jar>
 </jdbc.driver.jar>

The values of these elements will depend on what database type you've chosen to use. For
example, the value of jdbc.driver would be org.postgresql.Driver for PostgreSQL, and
com.mysql.jdbc.Driver for MySQL.

3.2. Testing (Validation) Profile

Follow the same steps as above, but making the changes in the variables within the validation
profile rather than the local profile.

4. Filling in SyMBA variables within the top-level
pom.xml

While the database holds all experimental metadata, it does not hold the raw experimental data.
Instead we chose to keep the raw data separate to reduce the size of the relational database.
Create a directory on the computer where you plan to store the data, and then put the details of
the machine - and the user that will be the owner of the data - into the fields below, which are
present within your-checkout/trunk/pom.xml . These elements will be read by the web interface
and stored.

Also included in the variables below are a variety of other items that are required within the web
interface. Each variable has a comment stating what the variable is used for. The variable set
below are represented once per profile within the pom, and therefore you will need to set the
variables specifically for each profile you wish to use.

 <!-- The help email address for your group -->
<net.sourceforge.symba.webapp.helpEmail>helpdesk@cisban.ac.uk</net.sourceforge.symba.
webapp.helpEmail>
 <!-- The name and verison of this software: there are already reasonable defaults, so
you don't need to
 change this unless you want to -->
<net.sourceforge.symba.webapp.softwareName>${pom.artifactId}</net.sourceforge.symba.we
bapp.softwareName>

<net.sourceforge.symba.webapp.softwareVersion>${pom.version}</net.sourceforge.symba.we
bapp.softwareVersion>

 <!-- The class name for the jdbc driver for the SyMBA security database. Should be the
same
 as jdbc.driver variable above, unless you are using a completely different database for
the
 security database. -->
 <net.sourceforge.symba.webapp.security.driver>org.postgresql.Driver
 </net.sourceforge.symba.webapp.security.driver>

 <!-- jdbc connection details for the SyMBA security database -->
<net.sourceforge.symba.webapp.security.url>jdbc:postgresql://localhost:5432/symba_security
 </net.sourceforge.symba.webapp.security.url>

 <!-- The username and password for the SyMBA security database. -->
<net.sourceforge.symba.webapp.security.username>user</net.sourceforge.symba.webapp.se
curity.username>
<net.sourceforge.symba.webapp.security.password>pass</net.sourceforge.symba.webapp.se
curity.password>

 <!-- The machine name of the remote machine where the data files will be stored -->
<net.sourceforge.symba.webapp.scp.hostname>localhost</net.sourceforge.symba.webapp.sc
p.hostname>

 <!-- The full path to the actual directory where the files should reside. The data files will
be put directly
 into this directory. -->
<net.sourceforge.symba.webapp.scp.directory>/your/directory/for/data/</net.sourceforge.symb
a.webapp.scp.directory>

 <!-- The username and password to use to connect to the remote machine where the
data files are stored -->
<net.sourceforge.symba.webapp.scp.username>user</net.sourceforge.symba.webapp.scp.us
ername>
<net.sourceforge.symba.webapp.scp.password>pass</net.sourceforge.symba.webapp.scp.pa
ssword>

 <!-- net.sourceforge.symba.webapp.global.remote.data.store.os MUST be either "unix"
or "dos" -->
 <net.sourceforge.symba.webapp.scp.remote.data.store.os>unix
 </net.sourceforge.symba.webapp.scp.remote.data.store.os>
 <!-- In DOS, you need to replace all of the colons in an LSID. Tell SyMBA want to
replace
 them with using this variable. This variable is ignored when the scp.remote.data.store.os
is set to "unix"

 If you don't provide anything at all and are using "dos", the default will be a double
underscore, "__" -->
<net.sourceforge.symba.webapp.scp.lsid.colon.replacement></net.sourceforge.symba.webap
p.scp.lsid.colon.replacement>

5. Compilation

5.1. Default (Local) Profile

Change into the top-level trunk/ directory. Generate all of the automatically-generated AndroMDA
sources:

 mvn install

You should see a "BUILD SUCCESSFUL" message at the end of it. You must be connected to the
internet for this step to work, as there will be many jars that need to be downloaded.

You now have all auto-generated code.

5.2. Testing (Validation) Profile

This is the same as the Default profile, except you have to explicitly state that you want to compile
using the Validation profile. Further, during the initial install, you don't want the unit tests to be run,
as you want all jars to be made first.

 mvn -Denv=val -DskipTests install

The Validation profile has now been used to make all FuGE Hibernate STK jars.

5.3. Fixing a Bug in the AndroMDA plugin

This step must be run only once, directly after the first time you run the first maven install
command. Follow this step and then run the same maven install command you ran the first time to
pick up the modified plugin.

When you downloaded and installed the AndroMDA plugin for Maven 2, there was a small bug in
one of the jars. (Details of this bug can be found on the AndroMDA forum , and thanks to Olga

Tchuvatkina for including the instructions for fixing it.)

Without this fix, the XSDs generated will be virtually empty, containing only the top-level

http://galaxy.andromda.org/forum/viewtopic.php?t=2598

1.

2.

-

-

-

namespace information. Therefore, the first time you run maven install, the AndroMDA plugin files
are automatically downloaded, but with the incorrect xmlschema cartridge. This copy step only
needs to happen once.

Go into the top-level directory (directly underneath the trunk/ directory) of SyMBA. You'll find a

file called andromda-xmlschema-cartridge-3.2.jar there.

Copy this into the correct part of your Maven 2 Repository. Below the environment variable

$M2_REPO is used to mark the location of your local Maven 2 Repository. Overwrite the

default jar file with the fixed one, making the directory first, if required:

 mkdir -p $M2_REPO/org/andromda/cartridges/andromda-xmlschema-cartridge/3.2/
 cp andromda-xmlschema-cartridge-3.2.jar
$M2_REPO/org/andromda/cartridges/andromda-xmlschema-cartridge/3.2/

6. Optional Modification of the UML

Once you have run the maven install at least once, and fixed the bug in the AndroMDA plugin as
stated above, you can start modifying the UML, if you so wish.

OPTIONAL: If you wish to make changes to the FuGE UML prior to generating the code, the UML
may be found in trunk/symba-mda/src/main/uml/SyMBA-FuGE-v1.mdzip . Any changes you make
in the UML must be converted from this MagicDraw proprietary file type to a standard UML2 file
type.

Open up MagicDraw 15.0. Before you open any of the FuGE mdzip files, you need to set the

maven2.repository path variable. This is equivalent to the $M2_REPO environment variable

you will have already set when installing maven. It points to the location of the andromda 3.2

profiles, which are inside the maven repository. This value should be wherever you have your

maven repository: if you installed Maven2 using the default repository location, then

maven2.repository would be $HOME/.m2/repository for linux, or the equivalent in windows.

If you are having problems, you can manually copy all of the andromda profiles from the maven

repository ($M2_REPO/org/andromda/profiles) into the same directory as the model file, or

into the profiles/ directory of the MagicDraw installation location.

Test that your setup works after setting this variable by opening trunk/symba-

mda/src/main/uml/SyMBA-FuGE-v1.mdzip . If it loads without error, you MagicDraw installation

is complete.

You can auto-generate the Java IDE project files using Maven 2. The auto-generation step should
be performed for the first time after successfully installing and compiling the STK. If you need to
update the auto-generated files at any time, you can just re-run the command.

For example, to autogenerate IntelliJ files (), change directory to within the top-level trunk

directory and run the following command:

 mvn idea:idea

There are other similar commands for IDEs such as Eclipse. Details can be found on the Maven

website.

If you are using IntelliJ 7.x or higher, the first time you use the project files, IntelliJ will tell you it
needs to upgrade the project files. Just agree to all dialog boxes.

7. Default (Local) Profile

There are many useful AndroMDA-specific maven commands in the trunk/readme.txt generated
by AndroMDA, including the commands necessary to create the tables in the database, also
shown below. You will need to create the database before using the STK.

 mvn -f symba-core/pom.xml andromdapp:schema -Dtasks=create

If you need to re-create the database from scratch at any time, you can add the drop task to the
task list as shown below:

 mvn -f symba-core/pom.xml andromdapp:schema -Dtasks=drop,create

8. Testing (Validation) Profile

If you wish to create the test database (used in the unit tests), then you will need to run this
command after having run the Compiling step for the Validation profile:

 mvn -f symba-core/pom.xml -Denv=val andromdapp:schema -Dtasks=create

9. Assigning Identifiers

By default SyMBA utilizes its own LSID assigner Web Service for assigning new LSIDs to the
FuGE objects. There is much more information on using the LSID Web Services (WS) provided by
SyMBA in the LSID section of the General Information documentation pages.

This installation comes expecting to connect to the LSID Assigning Service available in the

http://maven.apache.org/plugins/maven-eclipse-plugin/
http://maven.apache.org
compiling.html
../general-information/web-services.html
../installation/index.html

SyMBA Sandbox. You may use this for testing, but there is no guarantee of availability or
reliability, and therefore you should really maintain your own version of this war once you are
ready to use SyMBA in a more production-style environment. This is straightforward to do, and the
instructions are available in the LSID section mentioned above. Just remember you need an

active internet connection to be able to use this WS.

10. Checking the Connection to Your LSID Assigner

To fill the metadata database with either people or template protocols, you need to be able to
connect to an active LSID Assigner. When you ran "mvn install", you not only created the
symba.war file needed for the web interface, but also two Web Service wars: symba-lsid-ws-
assigner.war and symba-lsid-ws-resolver.war. It is the first of these that creates new LSIDs for
SyMBA.

You may choose to use your own assigner WS or the one provided for the SyMBA sandbox. If you
are using the sandbox WS, there is no guarantee of availability or reliability, and therefore you
should really maintain your own version of this WS once you are ready to use SyMBA in a more
production-style environment. This is straightforward to do, and the instructions are available in
the LSID section.

The SyMBA subversion version of the symba-mapping already expects to connect to the Sandbox
Assigner WS, so you don't need to change anything to get that to work. However, if you are using
your own version of the WS, you will need to remember to modify client-beans.xml found in
symba-mapping/src/main/resources. The address property needs to be updated to the address of
your own WS.

You can check your connection to the assigner WS by running the following command from within
the symba-lsid-ws-client directory:

 mvn exec:java -
Dexec.mainClass="net.sourceforge.symba.lsid.webservices.client.LsidAssignerClient"

The response from the program should look something like (but not necessarily identical to) this:

 28-May-2008 11:56:00 org.apache.cxf.service.factory.ReflectionServiceFactoryBean
buildServiceFromClass
 INFO: Creating Service
{http://service.webservices.lsid.symba.sourceforge.net/}LsidAssignerService from class
 net.sourceforge.symba.lsid.webservices.service.LsidAssigner
 [...]
 Response assignLSID: urn:lsid:cisban.cisbs.org:TestClassName:13b36013-a768-4d2a-8302-
64e1e9952ece

../general-information/web-services.html
../general-information/web-services.html

-

The last line is the response from the web service, and contains the test LSID.

11. Preparing Your List of Users

The symba-mapping module contains a file of sample people to load as users in your database
(xml/samples/SamplePeople.xml). Open SamplePeople.xml in an editor, and make any
modifications/additions you want, based on that template, to add the users you need. You may
wish to save this file with a different name, and in a safe place for future reference.

12. Pre-loading Users into the Metadata Database

First, we'll store your users into the FuGE metadata database. You can do this with the following
command, replacing the SamplePeople.xml filename with the correct file and path for your own
user XML file:

 mvn exec:java -
Dexec.mainClass="net.sourceforge.symba.mapping.hibernatejaxb2.UnmarshalPeople" -
Dexec.args="xml/samples/SamplePeople.xml"

13. Pre-loading People into the Login/Security
Database

Once you have loaded your people into the SyMBA database, you will also need to tell your
symba_security database about those people. Remember, a FuGE Person's Endurant LSID is
what goes into the security database in the "lsid" column.

There are two methods of loading usernames and passwords into the security database:

Automatically. If you would like SyMBA to generate your passwords and usernames for you,

there are a number of Java classes provided with main() methods that will create usernames

and passwords for you from your user XML file made in the previous step. The first time you

ever generate usernames/passwords, run the following command, replacing the

SamplePeople.xml filename and path with your own user XML file, if different:

 mvn exec:java -
Dexec.mainClass="net.sourceforge.symba.webapp.util.security.CreateUserPassAndLoad" -
Dexec.args="xml/samples/SamplePeople.xml"

You should double-check that the users have been added to the USERS table by conventional

-

means (e.g. pgadmin III or psql). Also, save the STDOUT to a safe place, as these are the

generated usernames and passwords. If you look in the same package as

CreateUserPassAndLoad, you will see a number of other similar classes. CreateUserPass will

create the file of usernames and passwords, but won't load in the database.

LoadUserPassIntoDB takes an already-generated user/pass file from one of the two previously-

mentioned classes and loads it into the database. You may find these classes useful later on,

for maintenance or re-creation of the security database.

Manually. Using your favorite method of connecting to your database, run the appropriate SQL

INSERT statements directly into the USERS table, putting in whatever usernames and

passwords you want that match your user XML from the previous step.

14. Pre-loading Protocol Templates into the Metadata
Database

There are a number of sample protocol templates available for you to load into your SyMBA
installation. You can either start by loading these, or you can create your own based on these
templates. This section details how to load up the pre-provided sample template protocols.
Change into the symba-mapping directory and run the following command:

 mvn exec:java -
Dexec.mainClass="net.sourceforge.symba.mapping.hibernatejaxb2.UnmarshalWorkflow" -
Dexec.args="xml/samples/SampleMicroarray.xml \
 xml/samples/SampleMicroscopy.xml xml/referenceTemplates/CarmenElectrophysiology.xml"

This loads all of the currently-extant sample protocols.

15. Further Reference

There are some commands prepared for you in trunk/symba-mapping/README.txt that will help
you load sample people and sample protocols into your new database. You can use these
samples to guide the creation of your own people and template protocols. These can be used as a
handy reference, so you don't have to go back to these docs each time.

4. Known Problems

1. The Chicken and the Egg

Within the FuGE-OM, the AccessRight association (visible within the AuditMain class diagram)
links the SecurityAccess entity to the OntologyTerm entity with a 0...1 relationship. You will find
within the XmlDbRoundtripTest that any reference to the "accessRight" association end is
removed before comparing the original XML file and the XML file that was generated from the
database information. This is because of a basic chicken-and-the-egg problem between
AuditCollection and OntologyCollection.

This attribute of SecurityAccess links to an item in the OntologyCollection. However, the
AuditCollection *must* be loaded in the database before we can proceed to parsing the
OntologyCollection, as the OntologyCollection may have Audit Trails that are referenced by the
AuditCollection. However, if the ontology term that is referenced by the accessRight association is
not yet in the database, that association simply cannot be set within the SecurityAccess class.

In normal use, such ontology terms would already be present in the database, however for a unit
test round trip which is generating a new random XML file for each unit test, the ontology term is
NOT yet in the database. Hence the chicken-and-the-egg situation. Therefore, this association is
purposely removed from the XML file prior to running the comparison of the before and after XML
files, so that a known bug won't shield an unknown one.

Any suggestions on resolving this situation would be most appreciated.

2. Linking Table Between Software and Equipment is
Not Getting Filled

Within the FuGE-OM, the Software entity is linked to the Equipment entity with a Many2Many
relationship. For some reason, the spring-controlled Hibernate session is not properly flushing the
session after setting up an association of this type. Because of this, the Software2Equipment table
within the database, meant to hold such links, is never populated. This behaviour is shown in the
GenericSoftwareMappingHelperTest class, which currently fails.

A full explaination of this error is present in the Andromda forums , where I have yet to receive a

response. This part of the code will be fixed as soon as I can figure out how to add the appropriate

session.flush() statement.

Any suggestions on resolving this situation would be most appreciated.

http://galaxy.andromda.org/forum/viewtopic.php?t=5837

5. Testing the STK

This STK uses TestNG for its test suite. Maven has an integrated test suite plugin called Surefire,

which has Testng support .

There are a number of unit tests already available with this STK, and more are planned. These
tests are currently limited to the symba-mapping and symba-querying sub-projects, and can be
found within that directory. Tests are disabled by default within the default (local) profile and within
the production profile so that production databases are not accidentally modified with test data.

You should run the tests after re-running the Maven install command with the correct profile, thus
ensuring that the database connection details are the right ones for the test setup.

To run the tests, simply run these commands from the top-level trunk directory (the maven install
command just shows you the appropriate install command for the test commands below it: you do
not need to run it before each test, unless you have modified code outside of the module whose
tests you are calling):

 mvn install -Denv=val -DskipTests

 mvn -f symba-mapping/pom.xml test -Denv=val
 mvn -f symba-querying/pom.xml test -Denv=val

All should pass except two (testSoftware2EquipmentLink and
testSoftware2EquipmentLinkWithFlush), which are demonstrating a bug discovered within the
auto-generated Hibernate and Spring code. Full details of this bug are available in the Andromda

forums , and as soon as I have a fix, the unit tests should all pass.

http://testng.org/
http://maven.apache.org/plugins/maven-surefire-plugin/testng.html
http://galaxy.andromda.org/forum/viewtopic.php?t=5837
http://galaxy.andromda.org/forum/viewtopic.php?t=5837

6. Tips and Tricks

1. Using the Maven 2 exec:java Command

When running main() methods within SyMBA, you have a variety of choices for how they can be
called. You can use java from the command-line, but that requires that you specify the huge
classpath that will be needed for that class. You could also run from within your IDE, but then you
are using the IDE's classpath, and not the identical one that is created by Maven for the various
SyMBA jars.

How, then, can you ensure that you run these Java classes using the same classpath that was
used to build SyMBA in the first place? The answer is to use Maven to run your classes, in the
same way that you use Maven to build your project. You do this with the mvn exec:java plugin.
Details of this plugin are available from the http://mojo.codehaus.org/exec-maven-plugin/java-

mojo.html}Developer's website .

Let's take the example of loading the Sample People into the SyMBA Database. The command
should be run from within the symba-mapping/ subdirectory. It is as found in the symba-
mapping/README.txt file is:

 mvn exec:java -
Dexec.mainClass="net.sourceforge.symba.mapping.hibernatejaxb2.UnmarshalPeople" -
Dexec.args="xml/samples/SamplePeople.xml"

1.1. Specifying the Full Name for exec:java

Sometimes, you may get an error message from Maven stating that it cannot find the exec plugin.
This especially seems to happen in Windows systems. In these cases, you can call the plugin
using its full name, as in the example below:

 mvn org.codehaus.mojo:exec-maven-plugin:1.1:java -
Dexec.mainClass="net.sourceforge.symba.mapping.hibernatejaxb2.UnmarshalPeople" -
Dexec.args="xml/samples/SamplePeople.xml"

If you still have problems, please contact symba-devel@lists.sourceforge.net.

http://mojo.codehaus.org/exec-maven-plugin/java-mojo.html}Developer's website
http://mojo.codehaus.org/exec-maven-plugin/java-mojo.html}Developer's website

-

-

2. Configuring Subversion to Automatically Enable
Keywords in New Files

When Subversion keywords are enabled for a particular file under version control, Subversion will
automatically update the file with information about the last modifier of the file, the revision
number, and more. It can be applied to all sorts of different file types. You can enable keywords in
a particular file type one-by-one with commands like this:

 find . \(-name '.svn' -prune \) -o -name '*.java' -exec svn propset svn:keywords "Date Rev
Author HeadURL" {} \;

The above command will enable the specified keywords for all *.java files in the directory.

However, if (like me) you constantly are forgetting to run such a command with each svn add of a
new file, you can make modifications to your .subversion/config file (which lives in your home
directory) so that subversion performs the tagging for you.

Open .subversion/config and un-comment the following line:

 enable-auto-props = yes

Next, add a line (or un-comment the appropriate line if already present) in the [auto-props] section
for each file extension you wish to contain svn keywords. An example auto-props section is shown
below:

 *.xml = svn:eol-style=native; svn:keywords=Author Date Id Revision
 *.java = svn:eol-style=native; svn:keywords=Author Date Id Revision
 *.apt = svn:eol-style=native; svn:keywords=Author Date Id Revision

If you have any problems, please contact symba-devel@lists.sourceforge.net.

3. Using the Tomcat Manager

One method of re-starting the SyMBA web application on Tomcat is as follows:

Stop Tomcat

Delete the old symba.war and associated symba/ directory from Tomcat's webapps/ directory

-

-

Copy the new symba.war into Tomcat's webapps/ directory

Start Tomcat

However, this involves stopping and starting Tomcat each time you make a change. There is an
easier way: using your Tomcat Manager. With the manager, you can re-deploy a war file without
stopping the Tomcat server.

The first step is to make a user for Tomcat that has permissions to use the Tomcat Manager. Go
into the directory containing your Tomcat installation. Find the conf/tomcat-users.xml file and add
a user with the "manager" role. Below is an example (complete) tomcat-users.xml file:

 <?xml version='1.0' encoding='utf-8'?>
 <tomcat-users>
 <role rolename="manager"/>
 <user username="tomcat" password="tomcat" roles="manager"/>
 </tomcat-users>

Ensure that you've restarted Tomcat to have the changes take effect, and then go to the root URL
for your Tomcat installtion (e.g. if Tomcat is installed on your local machine on port 8081, then go
to http://localhost:8081). You should get a welcome to Tomcat screen, which states "If you're
seeing this page via a web browser, it means you've setup Tomcat successfully.
Congratulations!". On the left-hand side is a menu. The second item on the menu is "Tomcat
Manager". Click on this. The following screen allows you to deploy and undeploy wars to your
heart's content, without having to restart Tomcat. However, you need to watch for dragons when
using the Tomcat Manager. Details of possible problems with using it are in the next section.

4. "PermGen Space" Error

As described here , when you undeploy a webapp using Tomcat Manager, the classes aren't

neccessarily garbage collected. This means that, over time, when you undeploy/deploy multiple

times in a single Tomcat instance using the manager, you will eventually get an OutOfMemory

Exception, with a mention of "PermGen Space". This may happen with a properly-controlled

exception, or may show itself with a blank jsp that just doesn't seem to load properly. As SyMBA

uses CGLIB, commons-logging, spring and hibernate (all culprits mentioned in the web page

below), it will be tough going through with a profiler and finding all instances where it's not being

garbage collected. Until there are the resources to do this, there is a simple answer: Just stop and

restart your Tomcat Server. This sort of error always happens early on, so you can test after a

deploy to see if it is happening. You don't need to re-deploy or anything after such an error, just

stop and start Tomcat.

If you have any problems, please contact symba-devel@lists.sourceforge.net.

http://opensource.atlassian.com/confluence/spring/pages/viewpage.action?pageId=2669

-

-

5. MySQL on Windows: java.sql.SQLException: Can't
create/write to file
'C:\WINDOWS\TEMP\#sql_318_0.MYD' (Errcode:
13)

If you are using MySQL on Windows, you may intermittently encounter an exception similar to

 java.sql.SQLException: Can't create/write to file 'C:\WINDOWS\TEMP\#sql_318_0.MYD'
(Errcode: 13)

There is a lot of chatter on the web about such errors, without any real clear answers as to what is
happening. You'll get an error like this when you try to load content into the SyMBA database, e.g.
via UnmarshalPeople, UnmarshalWorkflow or other similar classes.

There are a variety of thoughts as to the reason. Even though MySQL seems to have the
permissions to write to the directory in question (as there are other temp files present there when
you look), it seems to have a sudden problem with one of the files, namely the one that is
mentioned in the exception. A temporary fix is to delete all of the tmp files in that directory.
However, this does NOT solve the problem, and it will just occur again. Various forums have
suggested defragging your hard disk, changing permissions in directories, and turning off the virus
checking in the directory where MySQL keeps its temp files (the directory mentioned in the
exception).

We have not found a satisfactory solution to this problem. The following was tried, but in the
particular case was not effective.

Ensure that you have a specific directory set aside for the MySQL temp files. You can create

such a directory by following the instructions here .

Following the suggestions made here , turn off the virus scanning for that directory.

6. Windows: Escaping Characters

If you have any problems, please contact symba-devel@lists.sourceforge.net.

7. Getting SyMBA Built Behind a Proxy

More here soon!

http://dev.mysql.com/doc/refman/5.0/en/cannot-create.html
http://forums.mysql.com/read.php?24,169274,178492#msg-178492

7.1. cxf.xml

7.2. Maven Settings

7.3. Subversion Settings

-

7. Would You Like to Contribute?

1. Do you wish to contribute to SyMBA?

If you have enjoyed using this STK, but also have some ideas for improvement, or perhaps wish
to include some of your own code in this project, please begin by contacting symba-
devel@lists.sourceforge.net. Explain what things you would like to see included, and whether or
not you would like to help add them.

If appropriate, the SyMBA Administrators could add you as a developer, allowing you to commit
code back to the SyMBA subversion repository. There are some guidelines to follow, however,
and please read on to see them.

2. Introduction

This section is for SyMBA developers only: that is, those who are identified on the SourceForge
project site as developers or administrators. It offers guidelines in modifying and documenting this
STK. You will only be able to modify the website or the code in Subversion if you are a SyMBA
developer.

3. What to include in new Java Classes

If you're contributing new Java classes to the STK, please ensure that you have put in useful
javadoc for all methods. If you've created a new package or sub-project, you'll also need to check
the top-level pom.xml in the reporting element, and ensure that your source code will get picked
up by the javadoc plugin when the mvn site:site command is run.

Also, please copy the LGPL license section from one of the existing Java classes and include it in
your file.

4. Subversion Best-Practices

You can commit changes if one of the SyMBA SourceForge administrators adds you as a SyMBA
developer. You will need to contact symba-devel@lists.sourceforge.net if you wish to be added.

Run "svn update"Every time you start a programming session with the STK, and also just prior

to running "svn commit". This will ensure that you resolve any potential conflicts prior to

committing changes.

-

-

Please only commit when you have a working STK: do not commit code that will break the

build. We need to ensure that anyone who checks out our STK from the trunk/ can at least build

the project, even if the trunk is in a snapshot state (which it will normally be in).

Each time we create a point or full release, it will be tagged and marked in the tags/

subdirectory of the project. This means that users can always choose to stay with a particular

release. If we need to bug-fix a particular release separately from what we're already building in

the trunk, then we can create a branch for that release in the branches/ subdirectory and work

from there. The tags/ subdirectory is never to be committed to, as that would be against

Subversion best-practices.

More information on Subversion can be found in its Manual .

5. Beyond Javadoc: Documenting Your Work

If any of the changes you make change how a user would install or use this STK, please ensure
that you update the Hibernate documentation, which we make available via the website both in
html and pdf format. The actual documentation is built using the APT (Almost Plain Text) Format
and then generated by maven into other formats.

The APT files are made into a book using the doxia maven plugin - this is a plugin that, in a more
generic usage, also builds the maven site documentation when you run the command mvn
site:site . The benefit of using the Doxia book plugin is that it can create the book in multiple
versions: currently we build the book in xdoc format, which is used by the mvn site:site command,
and in pdf, which is manually copied to the FuGE website for download and offline use. Please
see the Doxia Plugin Manual and information on writing in APT format .

You build the new version of the book by going into the books/ sub-directory and running the
book-generation command:

 cd symba-books/
 mvn doxia:render-books

This builds the book in the symba-books/target/generated-site directory.

6. Re-Building the SyMBA Website

When you are ready to re-build the entire website, go into the top-level directory and generate the
site docs in each of the sub-projects:

http://svnbook.red-bean.com/
http://maven.apache.org/doxia/index.html
http://maven.apache.org/doxia/format.html

 mvn site:site

This actually builds all of the html files. However, they are still in their individual sub-directory's
target/site directory. To put them all together and copy them to the FuGE website, you need to use
the mvn site:deploy command. However, to prevent accidental copying, the shell.sf.net site
element is commented out. Please ensure this remains the case when you are committing
changes to SVN.

Also edit your $M2_HOME/settings.xml file by adding the following:

 <server>
 <id>shell.sf.net</id>
 <username>your sf username</username>
 <password>your sf password</password>
 </server>

mvn site:deploy JUST copies the already-generated site docs. If you make a change to any of the
APT files, you must run mvn site:site FIRST, to re-generate the site docs, THEN mvn site:deploy
to copy them to the final location described in the distributionManagement element of the pom.xml

It is a good idea to test the maven-generated site before publishing to the SyMBA website.
Change the url element of the local-test site element below to local directory that is right for you,
then deploy locally:

 mvn site:deploy

and check the resulting site. If all looks OK, comment-out the local-test site element and un-
comment the shell.sf.net site element. Only developers with write-access to the shell.sf.net server
and the symba group area will be able to perform this goal. Run the deploy command again to
copy to the real SourceForge webserver:

 mvn site:deploy

The only problem with the site deployment at the moment is that it doesn't copy the non-html
books properly. This means that the pdf version of the installation instructions doesn't get put on
the server. So, as a final step, you need to scp the pdf manually:

 scp books/target/generated-site/pdf/symba/installation.pdf your-
username@shell.sf.net:/home/groups/s/sy/symba/htdocs/
 scp books/target/generated-site/pdf/symba/general-information.pdf your-
username@shell.sf.net:/home/groups/s/sy/symba/htdocs/
 scp books/target/generated-site/pdf/symba/deviations-from-fuge.pdf your-

username@shell.sf.net:/home/groups/s/sy/symba/htdocs/

Remember, you can only run site:deploy successfully if you are down as a SyMBA developer on
the SF site.

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

8. Modifications to the FuGE-OM

1. Modifications to the FuGE-OM for the Hibernate
and the EJB3 STK

This document contains the changes to the reference FuGE v1 UML Object model required to
properly generate the Hibernate code using the AndroMDA Hibernate+Spring cartridge. It is based
extensively on Leandro Hermida's similar document for the FuGE EJB3 STK, so that the two UML
documents will be similar. Deviations from his modifications are noted.

Rename the copied package to net.sourceforge.fuge

Within the net.sourceforge.fuge package change ALL the packages in the entire FuGE

hierarchy to lowercase so that it will later produce JavaBeans standard package names (e.g.

ConceptualMolecule --> conceptualmolecule)

(This step was not needed in the Hibernate STK UML Diagram, as it is already fixed there: Fix

typos in UML model, where +referenceAbleCollection between FuGE and

ReferenceableCollection should read +referenceableCollection)

(This step was also not needed within the Hibernate FuGE-OM) Search and remove all

AbstractAssociation stereotyped associations (20 of 26 instances) EXCEPT the following

(which don't seem to have a concrete partner - am still checking with developers about this) *

+dimensionElements : net.sourceforge.fuge::bio::data::DimensionElement

+dimensions : net.sourceforge.fuge::bio::data::Dimension

+inputPartitions : net.sourceforge.fuge::bio::data::DataPartition

+outputPartitions : net.sourceforge.fuge::bio::data::DataPartition

+partitionPairs : net.sourceforge.fuge::bio::data::PartitionPair

+supportingData : net.sourceforge.fuge::bio::data::Data

Look through all of the associations in the FuGE model and remove any association name

numbers that got added during copying (e.g. Provider1 --> Provider)

net.sourceforge.fuge.Provider1

net.sourceforge.fuge.bio.data.DimensionElementSet1

net.sourceforge.fuge.bio.data.PartitionedData1

net.sourceforge.fuge.bio.investigation.Conclusion1

net.sourceforge.fuge.bio.investigation.Hypothesis1

net.sourceforge.fuge.bio.material.Components1

net.sourceforge.fuge.bio.material.MeasuredMaterial1

net.sourceforge.fuge.common.protocol.Actions1

net.sourceforge.fuge.common.protocol.ChildProtocol1

net.sourceforge.fuge.common.protocol.Equipment1

net.sourceforge.fuge.common.protocol.EquipmentParts1

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

net.sourceforge.fuge.common.protocol.InputCompleteMaterials1

net.sourceforge.fuge.common.protocol.ParameterPairs1

net.sourceforge.fuge.common.protocol.Parameters1

net.sourceforge.fuge.common.protocol.Parameters2

net.sourceforge.fuge.common.protocol.Parameters3

net.sourceforge.fuge.common.protocol.Parameters4

net.sourceforge.fuge.common.protocol.Parameters5

net.sourceforge.fuge.common.protocol.Protocol1

net.sourceforge.fuge.common.protocol.Software1

net.sourceforge.fuge.common.protocol.Software2Equipment1

net.sourceforge.fuge.common.protocol.Value1

All many-to-many associations with two-way navigability MUST have an aggregation (or

composition) end

(added to end labelled "equipment", though it then appears on the end labelled

"software" in the diagram!) Software2Equipment (between GenericSoftware and

GenericEquipment) should be "shared" on +equipment end

Fix database table name clashes between certain associations and classes using

@andromda.persistence.table tagged value

Association Tagged Value Location Reason

Equipment PROTOCOL_EQUI
PMENT

between
GenericEquipment
and
GenericProtocol

clashes with
Equipment class

Software PROTOCOL_SOFT
WARE

between
GenericSoftware
and
GenericProtocol

clashes with
Software class

Provider PARAMETERIZAB
LE_PROVIDER

between
Parameterizable
and ContactRole

clashes with
Provider class

Create custom table names for classes and associations using @andromda.persistence.table

tagged value

Class Tagged Value Reason

FuGE F_U_G_E instead of FU_G_E

Software2Equipment
(between GenericSoftware
and GenericEquipment)

SOFTWARE2EQUIPMENT

instead of
SOFTWARE2_EQUIPMEN
T

Database EXTERNAL_DATABASE DATABASE is SQL
reserved word

- Certain associations need better/corrected table names using @andromda.persistence.table

tagged value

Association Tagged Value Location

Actions PROTOCOL_ACTION between GenericProtocol
and Action

ActionApplications PROTO_APPL_ACTION_A
PPL

between
ProtocolApplication and
ActionApplication

Affiliations AFFILIATION between Person and
Organization

AllBibliographicReferences REF_COLLECT_BIBLIO_R
EFERENCE

ReferenceableCollection
and BibliographicReference

AllContacts AUDIT_COLLECT_CONTA
CT

between AuditCollection
and Contact

AllData DATA_COLLECT_DATA between DataCollection
and Data

AllDatabases REF_COLLECT_EXT_DAT
ABASE

between
ReferenceableCollection
and Database

AllDataPartitions DATA_COLLECT_DATA_P
ARTITION

between DataCollection
and DataPartition

AllDimensions DATA_COLLECT_DIMENS
ION

between DataCollection
and Dimension

AllEquipment PROTO_COLLECT_EQUIP
MENT

between ProtocolCollection
and Equipment

AllProtocolApplications INVEST_COMPONENT_P
ROTO_APPL

between
InvestigationComponent
and ProtocolApplication

AllSequenceAnnotations CONCEP_MOL_COLLECT
_SEQ_ANNOT

between
ConceptualMoleculeCollecti
on and
SequenceAnnotationSet

AllSoftware PROTO_COLLECT_SOFT
WARE

between ProtocolCollection
and Software

Annotations DESCRIBABLE_ANNOTAT
ION

between Describable and
OntologyTerm

BibliographicReferences IDENT_BIBLIO_REFEREN
CE

Identifiable and
BibliographicReference

Characteristics MATERIAL_CHARACTERI
STIC

between Material and
OntologyTerm

Components MATERIAL_COMPONENT between GenericMaterial
and GenericMaterial

ComponentDesignTypes COMPONENT_DESIGN_T
YPE

between
InvestigationComponent
and OntologyTerm

ConceptualMolecules CONCEP_MOL_COLLECT
_CONCEP_MOL

betweeen
ConceptualMoleculeCollecti
on and ConceptualMolecule

Contacts MATERIAL_CONTACT between Material and
ContactRole

DatabaseReferences IDENT_DB_REFERENCE between Identifiable and
DatabaseReference

DataPartitions FACTOR_VALUE_DATA_P
ARTITION

between FactorValue and
DataPartition

Descriptions DESCRIBABLE_DESCRIP
TION

between Describable and
Description

Dimensions DATA_DIMENSION between Data and
Dimension

DimensionElements DIMENSION_DIMENSION
_ELEMENT

between Dimension and
DimensionElement

EquipmentApplications PROTO_APPL_EQUIP_AP
PL

between
ProtocolApplication and
EquipmentApplication

EquipmentParts EQUIPMENT_PART between GenericEquipment
and GenericEquipment

Factors INVEST_COMPONENT_F
ACTOR

between
InvestigationComponent
and Factor

FactorCollection INVEST_COLLECT_FACT
OR

between
InvestigationCollection and
Factor

FactorValues FACTOR_FACTOR_VALU
E

between Factor and
FactorValue

HigherLevelAnalyses DATA_COLLECT_HIGHER
_LEV_ANAL

between DataCollection
and HigherLevelAnalysis

InputCompleteMaterials INPUT_COMPLETE_MATE
RIAL

between
GenericProtocolApplication
and Material

InputMaterials INPUT_MATERIAL between
GenericProtocolApplication
and
GenericMaterialMeasureme
nt

InputPartitions INPUT_PARTITION between PartitionPair and
DataPartition

InputTypes INPUT_TYPE between Protocol and
OntologyTerm

Investigations INVEST_COLLECT_INVES
TIGATION

between
InvestigationCollection and
Investigation

InvestigationComponents INVEST_INVEST_COMPO
NENT

between Investigation and
InvestigationComponent

InvestigationTypes INVESTIGATION_TYPE between Investigation and
OntologyTerm

Materials MATERIAL_COLLECT_MA
TERIAL

between MaterialCollection
and Material

Members SECURITY_GROUP_MEM
BER

between SecurityGroup and
Contact

OntologySources ONTOLOGY_COLLECT_S
OURCE

between
OntologyCollection and
OntologySource

OntologyTerms ONTOLOGY_COLLECT_T
ERM

between
OntologyCollection and
OntologyTerm

OutputMaterials OUTPUT_MATERIAL between
GenericProtocolApplication
and Material

OutputPartitions OUTPUT_PARTITION between PartitionPair and
DataPartition

OutputTypes OUTPUT_TYPE between Protocol and
OntologyTerm

Owners SECURITY_OWNER between Security and
Contact

Parameters EQUIPMENT_PARAMETE
R

between GenericEquipment
and GenericParameter

Parameters SOFTWARE_PARAMETE
R

between GenericSoftware
and GenericParameter

Parameters PROTOCOL_PARAMETER

between GenericProtocol
and GenericParameter

Parameters ACTION_PARAMETER between GenericAction and
GenericParameter

ParameterPairs ACTION_PARAMETER_P
AIR

between GenericAction and
ParameterPair

ParameterValues PARAM_APPL_PARAM_V
ALUE

between
ParameterizableApplication
 and ParameterValue

PartitionPairs PROTO_APPL_PARTITIO
N_PAIR

between
ProtocolApplication and
PartitionPair

Performers PROTO_APPL_PERFORM
ER

between
ProtocolApplication and
ContactRole

Properties ONTOLOGY_INDIVIDUAL_
PROPERTY

between OntologyIndividual
and OntologyProperty

PropertySets DESCRIBABLE_PROPERT
Y_SET

between Describable and
NameValueType

Protocols PROTO_COLLECT_PROT
OCOL

between ProtocolCollection
and Protocol

ProtocolApplications PROTO_COLLECT_PROT
O_APPL

between ProtocolCollection
and ProtocolApplication

Providers INVESTIGATION_PROVID
ER

between Investigation and
ContactRole

QualityControlStatistics QUALITY_CONTROL_STA
TISTIC

between Material and
OntologyTerm

RangeDescriptors RANGE_DESCRIPTOR between Range and
OntologyTerm

SecurityGroups AUDIT_COLLECT_SECUR
ITY_GROUP

between AuditCollection
and SecurityGroup

SecurityRights SECURITY_RIGHT between Security and
SecurityAccess

SoftwareApplications PROTO_APPL_SOFTWAR
E_APPL

between
ProtocolApplication and
SoftwareApplication

SourceMaterials SOURCE_MATERIAL between Investigation and
Material

SummaryResults SUMMARY_RESULT between Investigation and
HigherLevelAnalysis

Types PARAMETERIZABLE_TYP
E

between Parameterizable
and OntologyTerm

Types SEQUENCE_ANNOTATIO
N_SET_TYPE

between
SequenceAnnotationSet
and OntologyTerm

- Certain associations ends need better/corrected column names using

@andromda.persistence.column tagged value

Association End Tagged Value Location Reason

+parameters PARAMETER_ID Parameters
association
between
GenericAction and
GenericParameter

override plural
association end
name

+parameterPairs PARAMETER_PAI
R_ID

ParameterPairs
association
between
GenericAction and
ParameterPair

override plural
association end
name

+affiliations AFFILIATION_ID Affliliations
association
between Person
and Organization

override plural
association end
name

+allContacts CONTACT_ID AllContacts
association
between
AuditCollection and
Contact

override plural
association end
name

+securityGroups SECURITY_GROU
P_ID

SecurityGroups
association
between
AuditCollection and
SecurityGroup

override plural
association end
name

+componentDesign
Types

COMPONENT_DE
SIGN_TYPE_ID

ComponentDesignT
ypes association
between
InvestigationCompo
nent and
OntologyTerm

override plural
association end
name

+conceptualMolecul
es

CONCEPTUAL_M
OLECULE_ID

ConceptualMolecul
es association
between
ConceptualMolecul
eCollection and
ConceptualMolecul
e

override plural
association end
name

+allSequenceAnnot
ations

SEQUENCE_ANN
OTATION_ID

AllSequenceAnnota
tions association
between
ConceptualMolecul
eCollection and
SequenceAnnotatio
nSet

override plural
association end
name

+allData DATA_ID AllData association
between
DataCollection and
Data

override plural
association end
name

+allDataPartitions DATA_PARTITION
_ID

AllDataPartitions
association
between
DataCollection and
DataPartition

override plural
association end
name

+allDimensions DIMENSION_ID AllDimensions
association
between
DataCollection and
Dimension

override plural
association end
name

+higherLevelAnalys
es

HIGHER_LEVEL_A
NALYSIS_ID

HigherLevelAnalyse
s association
between
DataCollection and
HigherLevelAnalysi
s

override plural
association end
name

+dimensions DIMENSION_ID Dimensions
association
between Data and
Dimension

override plural
association end
name

+annotations ANNOTATION_ID Annotations
association
between
Describable and
OntologyTerm

override plural
association end
name

+descriptions DESCRIPTION_ID Descriptions
association
between
Describable and
Description

override plural
association end
name

+propertySets PROPERTY_SET_I
D

PropertySets
assocation between
Describable and
NameValueType

override plural
association end
name

+dimensionElement
s

DIMENSION_ELE
MENT_ID

DimensionElements
 association
between Dimension
and
DimensionElement

override plural
association end
name

+parameters PARAMETER_ID Parameters
association
between
GenericEquipment
and
GenericParameter

override plural
association end
name

+equipmentParts EQUIPMENT_PAR
T_ID

EquipmentParts
association
between
GenericEquipment
and
GenericEquipment

override plural
association end
name

+factorCollection FACTOR_ID FactorCollection
association
between
InvestigationCollecti
on and Factor

override plural
association end
name

+factorValues FACTOR_VALUE_I
D

FactorValues
association
between Factor and
FactorValue

override plural
association end
name

+dataPartitions DATA_PARTITION
_ID

DataPartitions
association
between
FactorValue and
DataPartition

override plural
association end
name

+bibliographicRefer
ences

BIBLIOGRAPHIC_
REFERENCE_ID

BibliographicRefere
nces association
between Identifiable
and
BibliographicRefere
nce

override plural
association end
name

+databaseReferenc
es

DATABASE_REFE
RENCE_ID

DatabaseReference
s association
between Identifiable
and
DatabaseReference

override plural
association end
name

+inputCompleteMat
erials

INPUT_COMPLET
E_MATERIAL_ID

InputCompleteMate
rials association
between
GenericProtocolAp
plication and
Material

override plural
association end
name

+inputMaterials INPUT_MATERIAL
_ID

InputMaterials
association
between
GenericProtocolAp
plication and
GenericMaterialMe
asurement

override plural
association end
name

+inputPartitions INPUT_PARTITION
_ID

InputPartitions
association
between
ParitionPair and
DataPartition

override plural
association end
name

+inputTypes INPUT_TYPE_ID InputTypes
association
between Protocol
and OntologyTerm

override plural
association end
name

+providers PROVIDER_ID Providers
assoication
between
Investigation and
ContactRole

override plural
association end
name

+investigationTypes

INVESTIGATION_T
YPE_ID

InvestigationTypes
association
between
Investigation and
OntologyTerm

override plural
association end
name

+investigations INVESTIGATION_I
D

Investigations
association
between
InvestigationCollecti
on and
Investigations

override plural
association end
name

+factors FACTOR_ID Factors association
between
InvestigationCompo
nent and Factor

override plural
association end
name

+allProtocolApplicat
ions

PROTOCOL_APPL
ICATION_ID

AllProtocolApplicati
ons association
between
InvestigationCompo
nent and
ProtocolApplication

override plural
association end
name

+investigationComp
onents

INVESTIGATION_
COMPONENT_ID

InvestigationCompo
nents association
between
Investigation and
InvestigationCompo
nent

override plural
association end
name

+characteristics CHARACTERISTIC
_ID

Characteristics
association
between Material
and OntologyTerm

override plural
association end
name

+materials MATERIAL_ID Materials
association
between
MaterialCollection
and Material

override plural
association end
name

+components COMPONENT_ID Components
association
between
GenericMaterial
and
GenericMaterial

override plural
association end
name

+contacts CONTACT_ID Contacts
association
between Material
and ContactRole

override plural
association end
name

+sources SOURCE_ID Sources
association
between
OntologyCollection
and
OntologySource

override plural
association end
name

+ontologyTerms ONTOLOGY_TER
M_ID

OntologyTerms
association
between
OntologyCollection
and OntologyTerm

override plural
association end
name

+properties PROPERTY_ID Properties
association
between
OntologyIndividual
and
OntologyProperty

override plural
association end
name

+outputMaterials OUTPUT_MATERI
AL_ID

OutputMaterials
association
between
GenericProtocolAp
plication and
Material

override plural
association end
name

+outputPartitions OUTPUT_PARTITI
ON_ID

OutputPartitions
association
between
PartitionPair and
DataPartition

override plural
association end
name

+outputTypes OUTPUT_TYPE_ID

OutputTypes
association
between Protocol
and OntologyTerm

override plural
association end
name

+types TYPE_ID Types association
between
Parameterizable
and OntologyTerm

override plural
association end
name

+parameterValues PARAMETER_VAL
UE_ID

ParameterValues
association
between
ParameterizableAp
plication and
ParameterValue

override plural
association end
name

+actions ACTION_ID Actions association
between
GenericProtocol
and Action

override plural
association end
name

+parameters PARAMETER_ID Parameters
association
between
GenericProtocol
and
GenericParameter

override plural
association end
name

+actionApplications

ACTION_APPLICA
TION_ID

ActionApplications
between
ProtocolApplication
and
ActionApplication

override plural
association end
name

+equipmentApplicat
ions

EQUIPMENT_APP
LICATION_ID

EquipmentApplicati
ons between
ProtocolApplication
and
EquipmentApplicati
on

override plural
association end
name

+partitionPairs PARTITION_PAIR_
ID

PartitionPairs
association
between
ProtocolApplication
and PartitionPair

override plural
association end
name

+performers PERFORMER_ID Performers
association
between
ProtocolApplication
and ContactRole

override plural
association end
name

+softwareApplicatio
ns

SOFTWARE_APPL
ICATION_ID

SoftwareApplication
s association
between
ProtocolApplication
and
SoftwareApplication
s

override plural
association end
name

+allEquipment EQUIPMENT_ID AllEquipment
association
between
ProtocolCollection
and Equipment

override plural
association end
name

+protocols PROTOCOL_ID Protocols
association
between
ProtocolCollection
and Protocol

override plural
association end
name

+protocolApplicatio
ns

PROTOCOL_APPL
ICATION_ID

ProtocolApplication
s association
between
ProtocolCollection
and
ProtocolApplication
s

override plural
association end
name

+allSoftwares SOFTWARE_ID AllSoftwares
association
between
ProtcolCollection
and Software

override plural
association end
name

+qualityControlStati
stics

QUALITY_CONTR
OL_STATISTIC_ID

QualityControlStatis
tics association
between Material
and OntologyTerm

override plural
association end
name

+rangeDescriptors RANGE_DESCRIP
TOR_ID

RangeDescriptor
association
between Range
and OntologyTerm

override plural
association end
name

+allBibliographicRef
erences

BIBLIOGRAPHIC_
REFERENCE_ID

AllBibliographicRef
erences association
between
ReferenceableColle
ction and
BibliographicRefere
nce

override plural
association end
name

+allDatabases DATABASE_ID AllDatabases
association
between
ReferenceableColle
ction and Database

override plural
association end
name

+members MEMBER_ID Members
association
between
SecurityGroup and
Contact

override plural
association end
name

+owners OWNER_ID Owners association
between Security
and Contact

override plural
association end
name

+securityRights SECURITY_RIGHT
_ID

SecurityRights
association
between Security
and SecurityAccess

override plural
association end
name

+types TYPE_ID Types association
between
SequenceAnnotatio
nSet and
OntologyTerm

override plural
association end
name

+parameters PARAMETER_ID Parameters
association
between
GenericSoftware
and
GenericParameter

override plural
association end
name

+sourceMaterials SOURCE_MATERI
AL_ID

SourceMaterials
association
between
Investigation and
Material

override plural
association end
name

+summaryResults SUMMARY_RESU
LT_ID

SummaryResults
association
between
Investigation and
HigherLevelAnalysi
s

override plural
association end
name

-

-

-

-

-

-

-

datatype::Object[] within GenericInternalData.storage has been changed to datatype::Blob.

Some mapping of this type is required to temporarily fix the inability of PostgreSQL to deal with

Object arrays, as there is no default mapping.

2. Hibernate-only FuGE-OM Modifications

These modifications were only performed on the Hibernate STK's version of the FuGE-OM.

2.1. Changes to the standard PostgreSQL Mapping

There is a file, PostgreSQLExtension.xml, within symba-mda/src/main/uml/config/mappings, which
specifies any additional mappings between UML data types and Postgres types. Below are a
summary of the contents of the file:

datatype::Date is mapped to TIMESTAMP WITH TIME ZONE\ I originally tried to map

datatype::URI to CHARACTER VARYING(1024) (this datatype::URI mapping has been created

to force URIs to be stored as a string, as there is no default mapping). However, this didn't work

as it was still being passed as a java.net.URI and ultimately caused exceptions that looked a bit

like: "org.springframework.orm.hibernate3.HibernateSystemException: could not deserialize;

nested exception is org.hibernate.type.SerializationException: could not deserialize at

net.sourceforge.fuge.service.EntityServiceBase.getIdentifiable(EntityServiceBase.java:1113)".

Therefore I changed both the PostgreSQL and Java mapping so that both in the database and

in Java, the datatype::URI is mapped to CHARACTER VARYING(1024) (for PostgreSQL) and

java.lang.String (for Java). This isn't ideal, but until I can figure out a way to have the URI dealt

with correctly, at least it doesn't cause problems. This meant that the following URIs are

actually strings within the API, though the UML has not changed:

net.sourceforge.fuge.common.references.Database.URI

net.sourceforge.fuge.common.description.Uri.location

net.sourceforge.fuge.bio.data.ExternalData.location

net.sourceforge.fuge.common.ontology.OntologySource.ontologyURI

2.2. Changes to column attributes

Had to set the Unique stereotype for Identifiable.identifier, as this hadn't been done, and

without it we cannot retrieve objects based on their identifier.

2.3. Changes to entity names

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

The "URI" entity is problematic for Spring, as any class name whose second letter is upper

case can cause problems. The best way to solve it is to change the name of this entity to "Uri".

2.4. Changes to entity column/property names

Certain property names of entities needed to be changed because they were PostgreSQL

reserved words. This can be done with the @andromda.persistence.column tagged value.

Property/Column Name Tagged Value Comments

+end (hibernate
implementation only)

END_DATE It is the +end property of
the Investigation entity

+end (hibernate
implementation only)

END_POSITION It is the +end property of
the Sequence entity

2.5. Changes from lazy to eager loading

The association between AuditCollection and SecurityGroup is composition, but it is still lazily

fetched. This is perhaps because it is a 0...* association, and can therefore can have more than

one security group? In any case, have set UML to be eager fetched. This means setting

@andromda.hibernate.lazy to false within the tag for the association end "securityGroups".

In the same way, the following association ends were set to @andromda.hibernate.lazy to

false:

association end (AE): "securityGroups" (the first instance above)

AE: "securityCollection"

AE: "securityRights"

AE: "annotations" for Describable

AE: bibliographicReferences for Identifiable

AE: parent for Organization

AE: affiliations for Person

AE: members for SecurityGroups

AE: outputMaterials, inputData, inputCompleteMaterials, outputData for

GenericProtocolApplication

AE: performer for Audit

AE: equipment for GenericSoftware

AE: equipment for GenericProtocol

AE: software for GenericProtocol

-

-

-

-

-

-

AE: inputTypes, outputTypes for Protocol

AE: contact for ContactRole

AE: ontologySource for OntologyTerm

AE: rangeDescriptors for Range

AE: measuredMaterial for GenericMaterialMeasurement

AE: childProtocolApplication for ActionApplication

2.6. Change to Cardinalities

The back cardinality (the side with the diamond in it) of GenericAction to Protocol (named
childProtocol) should be 0...* rather than 0...1 . It doesn't affect the XSD because these aren't
checked but will affect the database. This is something that probably should be fixed in the UML.

-

-

9. Example Java Code Provided With the original

Hibernate STK

The mapping between the JAXB2 classes and persistence classes generated by the cartridges
must currently be done manually. This STK provides the handwritten mapping code between the
JAXB2 classes and the Hibernate cartridge-generated POJOs.

The code that performs this mapping is present within
net.sourceforge.symba.mapping.hibernatejaxb2 package inside the symba-mapping sub-project. It
is tested with a round trip from the XML to the database and back again.

The DatabaseObjectHelper class contains some convienience methods to help access to the
database services. These are described below:

getOrCreate : Use when you're not sure if your object is already in the database. It will either

retrieve your object or create a new one. Checks to see if the identifier provided is already in

the database. If it is, return the associated object. If it isn't, then create the object with the

provided identifier and return it. If no identifier was provided, then create a fresh identifier and

return the new object. This does NOT create any object in the database.

assignAndSave : Should only be used if you want to re-assign an identifier to an already

existing object and then load that object into the database, as it does NOT create a new object

but assumes a pre-existing one. You may pass a Person object as the person who should be

marked as the audit trail owner. This person must already be loaded in the database, if used.

However, the method will deal properly with null values in the person argument, therefore if you

don't have person information, just pass a null value for that argument and the audit information

will be created without it.

There are various helper classes available to help you load and unload XML into the database.
These classes make use of the net.sourceforge.symba.mapping.hibernatejaxb2.helper mapping
classes.

1. PeopleUnmarshaler (Example Main in
UnmarshalPeople)

Allows you to load the contents of a FuGE-ML AuditCollection into the database. This is useful if
you wish to pre-fill the database with the members of an organization or group.

2. XMLUnmarshaler (Example Main in
UnmarshalXML and XMLRoundtrip)

unit-tests.html

Allows you to load the contents of a full FuGE-ML file into the database.

3. XMLMarshaler (Example Main in MarshalXML and
XMLRoundtrip)

Allows you to extract a full FuGE experiment from the database and write it out in FugE-ML.

The GenerateOntologyIndividuals class within the net.sourceforge.symba.mapping.hibernatejaxb2
package allows the user to generate quickly a FuGE-ML OntologyCollection file that can then be
loaded into the database as part of a FuGE-ML file.

The input file is of the type:

 accession1::name1
 accession2::name2
 [...]
 accessionN::nameN

And you'll get out some FuGE-ML to load into your database. The ontologySource URI and the
URN namespace are hard-coded right now, so you will need to modify that to suit your needs.

-

-

-

-

-

10. Further Reading

1. Contributors to Documentation

Special thanks goes to Frank Gibson, Rainer Scoepf, and Joerg Servos for helping find bugs in
and suggesting additions to the installation docs.

2. Resources used in the creation of this document

1

http://wiki.ficcs.org/ficcs/FuGE-to-XSD , accessed 6 August 2007.

2

http://galaxy.andromda.org/index.php?option=com_content&task=view

&id=105&Itemid=89 , accessed 6 August 2007.

3. FuGE

: FuGE website

: FuGE Wiki

FuGE paper in Nature Biotechnology

4. Subversion

: Subversion Documentation

5. Maven 2

: Maven Documentation

http://wiki.ficcs.org/ficcs/FuGE-to-XSD
http://galaxy.andromda.org/index.php?option=com_content&amp;task=view&amp;id=105&amp;Itemid=89
http://galaxy.andromda.org/index.php?option=com_content&amp;task=view&amp;id=105&amp;Itemid=89
http://www.nature.com/nbt/journal/v25/n10/full/nbt1347.html

	1. Introduction
	1. Download These Instructions
	2. What is the relationship between SyMBA and the Object Model?

	2. What You'll Need
	1. Recommendations
	1.1. Operating Systems
	1.2. Database Choice

	2. Installing SSH
	3. Installing Sun Java 5 or Java 6
	3.1. Install Sun J2SE Development Kit 6.0 (JDK 6.0)
	3.2. Install Sun J2SE Development Kit 5.0 (JDK 5.0)
	3.3. Check Your Installation

	4. Download and Install Maven 2.0.7 or Later
	5. Maven Setup
	6. Environment Variables and Settings for Maven
	7. Test Maven (Part One)
	8. Test Maven (Part Two)
	9. Introduction
	10. AndroMDA Installation
	10.1. Download and Install
	10.2. Test Installation

	11. Choosing a UML Tool
	12. Installing a Supported Database
	12.1. PostgreSQL
	12.2. MySQL

	3. Setting Up, Compiling, and Running the Hibernate STK
	1. Maven Profiles
	2. Create a database to hold the metadata
	2.1. Default (Local) Profile
	2.2. Testing (Validation) Profile

	3. Point Maven at the correct jdbc jar
	3.1. Default (Local) Profile
	3.2. Testing (Validation) Profile

	4. Filling in SyMBA variables within the top-level pom.xml
	5. Compilation
	5.1. Default (Local) Profile
	5.2. Testing (Validation) Profile
	5.3. Fixing a Bug in the AndroMDA plugin

	6. Optional Modification of the UML
	7. Default (Local) Profile
	8. Testing (Validation) Profile
	9. Assigning Identifiers
	10. Checking the Connection to Your LSID Assigner
	11. Preparing Your List of Users
	12. Pre-loading Users into the Metadata Database
	13. Pre-loading People into the Login/Security Database
	14. Pre-loading Protocol Templates into the Metadata Database
	15. Further Reference

	4. Known Problems
	1. The Chicken and the Egg
	2. Linking Table Between Software and Equipment is Not Getting Filled

	5. Testing the STK
	6. Tips and Tricks
	1. Using the Maven 2 exec:java Command
	1.1. Specifying the Full Name for exec:java

	2. Configuring Subversion to Automatically Enable Keywords in New Files
	3. Using the Tomcat Manager
	4. "PermGen Space" Error
	5. MySQL on Windows: java.sql.SQLException: Can't create/write to file 'C:\WINDOWS\TEMP\#sql_318_0.MYD' (Errcode: 13)
	6. Windows: Escaping Characters
	7. Getting SyMBA Built Behind a Proxy
	7.1. cxf.xml
	7.2. Maven Settings
	7.3. Subversion Settings

	7. Would You Like to Contribute?
	1. Do you wish to contribute to SyMBA?
	2. Introduction
	3. What to include in new Java Classes
	4. Subversion Best-Practices
	5. Beyond Javadoc: Documenting Your Work
	6. Re-Building the SyMBA Website

	8. Modifications to the FuGE-OM
	1. Modifications to the FuGE-OM for the Hibernate and the EJB3 STK
	2. Hibernate-only FuGE-OM Modifications
	2.1. Changes to the standard PostgreSQL Mapping
	2.2. Changes to column attributes
	2.3. Changes to entity names
	2.4. Changes to entity column/property names
	2.5. Changes from lazy to eager loading
	2.6. Change to Cardinalities

	9. Example Java Code Provided With the original Hibernate STK
	1. PeopleUnmarshaler (Example Main in UnmarshalPeople)
	2. XMLUnmarshaler (Example Main in UnmarshalXML and XMLRoundtrip)
	3. XMLMarshaler (Example Main in MarshalXML and XMLRoundtrip)

	10. Further Reading
	1. Contributors to Documentation
	2. Resources used in the creation of this document
	3. FuGE
	4. Subversion
	5. Maven 2

